ON COVER: Electrical Engineering Professor Allen M. Peterson with one of Stanford’s earliest computers, a Philbrick Electronic Analog Computer, in 1953. Peterson and mathematician John Herriot taught the first computer science classes at Stanford. Peterson began with computer electronics (analog and digital electrical circuits), while Herriot taught computer mathematics (numerical analysis). Together with statistician Albert Bowker and Dean of Engineering Fred Terman, they launched Stanford’s Computation Center in 1953 and an academic program that would evolve into the Department of Computer Science. Photo: News Service.

THIS PAGE: Portion of the flow chart for the Happy Families Planning Service computer program.
The idea of mixing computers and love began in the fall of 1959 when two electrical engineering students, Jim Harvey and Phil Fialer, decided to take Professor Jack Herriot’s computer course. Math 139, Theory and Operation of Computing Machines, was a popular course among math majors, electrical engineers, and graduate students in various science and engineering programs. Using Stanford’s relatively new IBM 650, they could gain proficiency in large-scale data analysis techniques using machine language assembly coding (or the relatively new IBM FORTRAN—FORmula TRANslator—computer language). The course required a term project, which gave students the rare opportunity to use Stanford’s otherwise closely guarded mainframe computer.

The virtually complete files of Harvey and Fialer’s project, the “Happy Families Planning Service,” document this creative undergraduate project as the earliest known computer date matching service in the United States.²

The Hardy Boys Meet Computer Science: Harvey and Fialer

Harvey and Fialer wanted to learn programming but they were, no doubt, thinking of the project from another angle as well. After all, the pair had been among the stalwarts of student radio station KZSU who had been thrown off the air the year before for causing illegal radio interference, operating with excessive transmitting power, and broadcasting less-than-tasteful radio programs—especially the steamy pot-boiler, the “Stanford Sadie” show.³ Both men had career records of fooling around with scientific and technical hobbies.

From junior high school through college, Jim Harvey had more than one encounter with the telephone company while inventing, and utilizing, his own “toll-free” telephone connection boxes and “automatic” electronic dialing system. Telephone companies in Oregon and California may have appreciated Har-
vey’s youthful enthusiasm and creativity, but they apparently felt that experimenting with the Bell System was best left to Western Electric and Bell Labs.

Phil Fialer was a youthful adventurer who had moved from color photography development and primitive stereophonic music experiments to inventive radio applications. Within a week of settling into Wilbur Hall in fall 1956, Fialer and a pal were summoned to Wilbur dormitory mistress Mrs. Summers. The pair had installed a ham radio-transmitting antenna in the attic eaves and succeeded in blotting out TV and radio reception for most Wilbur Hall residents. Later, the same duo built a ham transmitter from a table model AM radio and strung an “invisible” (very thin) magnet wire antenna from the dorm window to a tree on the Wilbur lawn. This caper, however, proved ineffective—the grounds maintenance crew removed the “invisible” antenna.

Enter Stanford’s Mainframe

By 1959, the older and wiser Fialer and Harvey had both enrolled in fall quarter’s Math 139 to learn how to program computers—in particular, Stanford’s most powerful computer, the IBM 650.

In the 1950s, mainframe computers were largely unavailable to students and the public (machines such as the Illiac at Illinois, Whirlwind at Princeton, and NORC, were built by IBM for governmental and military use). Following IBM’s delivery in 1954 of the first 650 to John Hancock Mutual Life Insurance of Boston, nearly 2,000 machines would be sold by 1962, making it the most popular computer by the late 1950s.

Universities wanted in on the act, and Stanford got its first mainframe computer, an IBM CPC (Card-Programmed electronic Calculator), in 1953. Stanford’s IBM 650, rented for $3,750 per month, was installed in the Hewlett-Packard teaching wing of the Electronics Research Laboratory (ERL), then located near the center of what is now the Science and Engineering Quad, or SEQ), in January 1956. To complete its reading, adding, subtracting, and printing instructions, the IBM 650 machine used 2,200 vacuum tubes and 4,000 diodes. The vacuum tubes generated so much heat that the Computer Center of the ERL was the first (and, in 1959, the only) portion of the building to be air-conditioned.

Though not classified as a large computer, the IBM 650 certainly seemed large to students in 1959. It was nearly three times more powerful than the IBM CPC. The IBM 650 was considered the “biggest” of the small computers—its closest challenger was the ElectroData Corporation’s Datatron. (The IBM 650 required 16 Kilowatts of power—100 amperes at 220 Volts AC—and the Datatron 13 Kilowatts.)

For technophiles, the IBM 650 had a 2,000-word memory drum, and an average access time of 2.4 milliseconds, using a decimal system with 10 digits per word. Its top speed was 22 to 33 operations per second. Its cardpunch and printer functioned at exactly half that speed. The IBM 650 was the only “small” computer to have double precision arithmetic capability, very useful for statistical problems. The computer-processing unit was coupled to a large Type 655 power unit and a Type 533 electromechanical card read-punch unit. Its card reader could process 200 punched cards per minute, or 265 digits per second. For printed reports it could also be connected to a Type 407 accounting machine output printer. Input was largely via 80-column Hollerith cards. Data on each card was prepared using a typewriter keypunch unit that punched rectangular holes in the cards.

As the course progressed, the Math 139 class learned to express various functions in computer code and to prepare the logical flow charts and language instructions—Enter, IF NOT-THEN, Add, Subtract, Sum, Do Loop, and so forth. Weekly homework assignments kept the students in line. Using the IBM 650 itself, however, was a treat saved for the end of the course.

The Great-Date-Matching Party:
The “Happy Families Planning Service”

The notion of melding Math 139 with the Great-Date-Matching Party surfaced early in the quarter when Fialer and Harvey needed to come up with a term project.
For some time, Fialer and Harvey had hosted parties in houses that they rented with several electrical engineering and KZSU buddies at 1203 and 1215 Los Trancos Woods Road in Portola Valley. Student nurses from the Veterans Administration psychiatric hospital on Willow Road in Menlo Park were often invited. The boys represented themselves to the nurses as the “SRI Junior Engineers Social Club” — which was at least partially true, since one Los Trancos housemate worked summers and part-time as a junior engineer at Stanford Research Institute (SRI). KZSU radio station parties also were held in Los Trancos, featuring the KZSU musical band marching around the Los Trancos circle loop road at midnight. (This somewhat impromptu band was the basis for the current Los Trancos Woods Community Marching Band, officially organized at a KZSU party on New Year’s Eve in 1960.)

Fialer and Harvey figured a KZSU-Los Trancos type party could emerge as a positive by-product of Math 139, using the computer to match “a given number of items of one class to the same number of items of another class.” The classes would be male and female subjects, and the population would be Stanford students, with a few miscellaneous Los Trancos Woods residents thrown in.

The pair wrote a program to measure the differences in respondents’ answers to a questionnaire. A “difference” score was then computed for each possible male-female pair.

The program compared one member of a “class”—one man—with all members of the other class—women—and then repeated this for all members of the first class. The couple—a member from each class—with the lowest difference score was then matched, and the process repeated for the remaining members of each class. Thus, the first couple selected was the “best” match. As fewer couples remained in the pool, the matched couples had larger and larger difference scores.

Given the limitations of computer time available and the requirements of the course, Fialer and Harvey did not use a “best-fit” algorithm, so the last remaining pairs were indeed truly “odd” couples. Two of the women in the sample, not Stanford students, were single mothers with two or three children. One of them, age 30, ended up paired with a frosh member of the Stanford Marching Band.
The Personal Questionnaire

The experiment would match 50 couples, one of which was a “dummy” couple added to the project for test-checking purposes. The sample was hardly random, as it included many friends of the two, and other KZSU regulars. Questionnaires also were distributed in dormitories.

The social-psychological profile the two enterprising scientists prepared was, to put it mildly, not the most sophisticated of social science tools. As Fialer recalls, “Well, Harvey had taken Psych 1....” Citing no scientific literature, they simply modeled the matched pairs by similarity of answers—certainly not the adage “opposites attract.” Thirty questions asked for such data as age, height, weight, religion, and hobbies, as well as personal habits, personality traits, and number of children the respondents wished for in a marriage. They were asked to note their drinking and smoking habits, and those habits they hoped for in their preferred mate.

Some questions were graded across several levels—from most introverted to most extroverted, passionate to frigid, aggressive to shy, lethargic to ambitious. Respondents were asked to indicate from a list their three most favorite and three most disliked hobbies or pastimes. From another selected list, they checked off their political stance (ranging from Communist or Fascist, although 2 men and 2 women bravely checked Socialist; 2 of these were non-students. Republicans (51 “New-Deal” and 17 “Old-Guard”) significantly outnumbered the 24 Democrats. Men were very slightly more likely to be Democrats.

As for smoking and drinking, both men and women wanted a mate whose habits were similar. Women were slightly more permissive, willing to accept their future mate’s desire to smoke or to drink. For example, a woman not smoking might check that her preference was for a mate who smoked occasionally; several noted the desirability of a man who “smoked a pipe.” Most of those who smoked or drank did so moderately or occasionally, at least as reported. Interestingly, women were slightly more likely than men to admit to smoking and drinking. (Of the 49 males responding, 20 smoked, 42 drank and 7 did neither. Of the 49 female respondents, 21 smoked, 46 drank and 3 did neither.) In all cases, if a respondent smoked, then that person drank alcohol at least occasionally.

Women preferred larger families. The mean number of children desired in a marriage was 3.5 for women, 3.1 for men. (The mode was 4, followed by 3 and 2 children desired.) No one in the sample wanted just one child, and only one male hoped for a childless marriage. On the other hand, women outnumbered men 6 to 3 among those who wished for 5 or more children.

Without performing a more complete statistical analysis, it is difficult to determine whether the women had a significantly different profile than the men on self-perceived personality traits. For example, a number of women as well as men viewed themselves as “very ambitious.” It would be uncharitable to suggest that the number of men who checked “very passionate” as a self-attribute, or those few non-drinking men who checked “heavy” drinker as desirable in a female mate, were fantasizing about their chances for drawing a “hot date.”

The Answers

Most of the population sampled was between 18 and 22. Several graduate students were as old as 25, and the few non-students included three up to the age of 30.7

As would be expected from the Stanford student body of 1959, the predominant religious preferences were Christian, totaling 70 of the 98 responses. Fifty of these were Protestant and 10 were Roman Catholic. Among Protestant denominations, Presbyterians led with 10 and Episcopalians with 9 respondents. There were 2 Jews, 1 Christian Scientist, and 1 Quaker. The only significant difference by sex was the number of men (16) versus women (8) who entered their religious preference as “non-religious” or “agnostic.”

As to politics, not one respondent checked Communist or Fascist, although 2 men and 2 women bravely checked Socialist; 2 of these were non-students. Republicans (51 “New-Deal” and 17 “Old-Guard”) significantly outnumbered the 24 Democrats. Men were very slightly more likely to be Democrats.

Running the Computer Program

The students in Math 139 had been required to submit their punched cards to a computer operator who would then run their program. That fall, the course had an enrollment of 150 students. The official total logged-in usage of the IBM 650 for the class was a little more than seven hours for the entire quarter—that is, each student team got to use the mainframe for be-
tween five and ten minutes. Since user time on the IBM 650 was carefully restricted, Fialer and Harvey explained in their report to Professor Herriot that it would take 90 minutes to do the complete sort on the 50 couples, and they were thus limited to running the model through for just 10 couples.

Working late at night, however, and unknown to Professor Herriot (or to the computer center staff), the boys went ahead and ran the program for all couples. A number of KZSU students were expert with lock-picking sets and carried them for “emergency use;” this skill aided their entrance to the computer lab after hours. Harvey and Fialer ran the program three times, fixing minor errors along the way, and using as much time as the rest of the class combined.

Fialer recalls that the ice cream machine in ERL that night required no money to give out ice cream bars, and thus the boys were sustained throughout their late-evening efforts.

Field Research in Computer Science:
The Party Site

At the end of the fall quarter, the Great-Date-Matching party was planned for Harvey’s residence at 1215 Los Trancos Woods Road. Among his many research interests, Harvey had been practicing the art of malt brewing, and several cases of home-brew rested in his dirt-floor basement. Root beer malt rather than regular beer malt had been used and occasionally a bottle blew off its cap, shooting alcoholic root beer up to the floorboards of the main portion of the house. As a result, the residence had an unusual smell of a mixture of Anchor Steam and A&W.

In addition to the homemade beer and other potables, the party provided a chance to hear the KZSU musical regulars, typically consisting of piano, banjo, guitar, clarinets, cornet, trombone, and several kazooos.

All of the 98 respondents were invited to the party. Some couldn’t make it: One young woman got engaged during the trials (not to her prospective “date”), and one young man, a radio science graduate student, callously decided to go skiing instead.

Field Research: Test Case

It was assumed that the closer the matching scores of a given couple, the greater the chance for computer-aided romance.

Harvey and Fialer quietly slipped the news to male cronies whose matching scores were low, and who therefore were liable to be lucky in love. Scores ranged from under 100, for two lucky couples, to just over 100 for several others. The worst mismatches produced scores above 600.

This author’s score was fourth best (lowest) of the 49 couples! The young lady with whom he was paired, Miss McD., was an 18-year-old frosh from Roble, and, like the author, bore a Scots-Irish name. She was 5’ 7” and 130 lbs., had reddish-hair and freckles. Though...
listing her religion as “uncertain,” in fact, she said her parents were Presbyterian. Miss McD. indicated that she was neither “passionate” nor “frigid,” and was of average attractiveness. She managed simultaneously to be, according to her questionnaire, somewhat aggressive, stubborn, and irritable, yet slightly affectionate and understanding.

Her lucky date was then 21 years old, 5’ 10” and 160 lbs. While he listed his religion as “Universalist,” he, too, was a Presbyterian. As did a number of the young men, he had listed himself as very passionate. He also saw himself as amiable, ambitious, and of average attractiveness.

Miss McD. liked reading, camping and dancing, and disliked boating, dinner parties, and cooking. The author also liked reading, camping, and concerts, but disliked dancing, dinner parties, and home/shop projects. So, except for their views of dancing, the two were a fairly close match.

One must note that the partygoers in 1959 were not privy to these raw data scores or specific answers, and the author did not learn of the recorded self-perceptions of Miss McD. until 42 years later.

On the big Saturday night, the adventuresome youth picked up Miss McD. from Roble Hall early in the evening. He turned his Austin-Healey 100-6 sports car up Alpine Road toward Los Trancos Woods. Their relationship hit an initial bump when Miss McD. informed the driver that he was proceeding at somewhat too fast a pace. Upon arrival at the party, the young lady expressed the thoughts that the house in the woods was odd, the band too loud, the party guests rather strange, and the homemade alcoholic root beer not to her liking. While things at the party overall seemed to be going rather well for some of the couples, by 10 p.m. the youthful male asked Miss McD. whether she would prefer to return to Roble. She replied definitely in the affirmative, and the duo motored back to campus, with Miss McD. constantly keeping the driver fully aware of his weaknesses as an operator of a motor vehicle.

The Fate of “Happy Families Planning Service”

This author did not return to the Los Trancos party that evening, so he cannot report on the overall success of the computer date matching experiment. Nor was any follow-up on the matched couples attempted by the research team. Among the 30 or so persons at the party known to this author, no marriages seem to have resulted. Certainly the 30-year-old single mother and the frosh Stanford Band member did not pursue their relationship.

Interestingly, in the Iowa State faculty-designed computer matching experiment of 1963, similar answers on matters of opinion were favored for matching, while on personality traits, the theory was that “opposites attract.” Perhaps Iowa applied more advanced psychological theory.

Whatever the social and psychological merits of the computer dating project, the “Happy Families Planning Service” received an “A” from Professor Herriot. In an attempt to raise his Stanford grade point average and, of course, to refine his Happy Families experiment, Harvey enrolled in the succeeding quarter (winter 1960) in an Education School course titled “Marriage and the Family.” Harvey proposed as his project for that course to re-tune the computer model and again conduct a date matching experiment with 50 couples. The Education professor strongly endorsed Harvey’s proposal.

The second time around, the party was held at the end of the quarter, again in Los Trancos Woods. Although there was virtually no difference in the questionnaire itself (or in the denouement), there had been a significant difference in participation. Without being too sexist, the second survey included students enrolled in the Education Department course itself, including some of the real campus beauties and Quad yearbook queens—Sue G., Maurine M., Dixie M., Carol P., to name a few—as well as Willa G. Wonka, cousin of the ubiquitous Warren G. Wonka.

This author, always willing to help in scientific research for the common good, again was a participant in the computer date matching survey. Again, the overall low (best) matching score was under 100 and the worst over 600.

The author was matched this time with a Miss W,
Looking Back

Stanford’s computer activities had been initiated in the early 1950s by such prominent faculty as Fred Terman, Albert Bowker, Jack Herriot, Allen Peterson, and others. By 1958, a computer science academic program was well on its way with the arrival of computer scientist George Forsythe and access to Stanford’s IBM 650. The Computer Science Department became one of the country’s truly outstanding programs, but such serious endeavors cannot hide the fact that it also fostered the nation’s first foray into Computers in Love.

Shortly after working on the computer date matching experiments, both Harvey and Fialer graduated from Stanford, Harvey in April and Fialer in June of 1960. James A. Harvey joined Lockheed Missiles and Space Corporation and later worked for Philco Corporation, currently known as Loral Corporation. He retired in 2000 as Aerospace Program Manager of Loral. Philip A. Fialer also joined Lockheed soon after graduation, returning to earn a master’s degree in electrical engineering from Stanford in 1964 and Ph.D. in 1970. He subsequently worked for the university and for Stanford Research Institute (now SRI-International), leaving there to co-found Mirage Systems, where he has served as president. He is currently chief technical officer of Mirage.

Neither has experimented further, however, with mixing computers and love.

C. Stewart Gillmor, ’60, is professor of history and science at Wesleyan University. For the years 1998-2001 he was visiting professor of electrical engineering at Stanford while writing a biography of Frederick E. Terman. A KZSU jazz disk jockey and cornet player, and more than simply an eyewitness to the above events, his grade-point average suffered mightily from his escapades.

ENDNOTES

1 An Iowa State University administration operation (a date-matching student dance using computers) was erroneously reported in *Time* as the first such experiment. “216 Meets 14,” *Time*, 25 October 1963, p.102. This oversight was soon corrected in a letter to the editor by Stew Gillmor, *Time*, 8 November 1963.

2 Philip A. Fialer and James A. Harvey, Math 139 Happy Families Planning Service Project file. The original 1959 computer program, flow charts, data input questionnaires and output results are preserved in the private collection of James Harvey.

6 IBM announced in 1956 that the 650 would have available as an option in the near future magnetic tape reading, alphanumeric data handling, floating-point arithmetic, and magnetic-core storage. This was in addition to its then-available numerical data handling, magnetic drum storage, and fixed-point arithmetic abilities.

7 “No one ever analyzed the student questionnaire,” the author recently wrote the editor, “so I did so in my seat on airplane flights.”

IS **WARREN G. WONKA** A MYTH? A check of the Internet search engine Google turns up the legendary Wonka under the generic heading of “campus pranks.” Beyond that, Google is silent.

But he does exist. For “proof,” look in the 1976 Palo Alto Phone Book:

Wong Yuk Kwong 837 S Wolfe Rd Sunnyvale 739-
Wong’s Cafe 147 E Washington Av Sunnyvale 736-
Wonka Warren G 717 Dolores St 327-
Wonn F A 1075 Space Park Wy Mw 967-
Woo B M 397 College Av PA 326-
Woo Candice 2131 Hanover PA 328-

Ma Bell wouldn’t lie, would she? Of course not. Nor the Stanford Quad, Daily nor Chapparal?

The historical markers are there, although a researcher needs a miner’s hat and flashlight (gloves wouldn’t hurt), and the impulse to dig deep, to track down the pranksters responsible.

Warren seems to have first made an appearance in 1948, thanks to the Chappie’s editors, or so we believe (see story, p.12). Like Kilroy, that figment of the American G.I.’s imagination, Warren then began to pop up wherever Stanford students (notably Hammer and Coffin Society or Band members) happened to be.

In 1951, the Associated Press reported an auto accident near Klamath Falls, Oregon, in which a car containing six Stanford Band members going to a Washington game skidded off the road. One student, apparently not wanting to worry his parents, gave his name as Warren G. Wonka of Watsonville, Calif. Sure enough, the Watsonville Register-Pajaronian ran the story on Page One.

His fame spread in 1952. Mr. Wonka apparently felt that Estes Kefauver should be president, and sent in a campaign contribution. Back came a thank-you note, with personal signature, on Senator Kefauver’s stationery:

Mr. Warren G. Wonka, Jr.
Toyon, Stanford University
California

Dear Mr. Wonka:
I just wanted to tell you how much
I appreciate all you’re doing for me out there.
I surely did enjoy my visit and I’ll be in California again very soon. I hope to see you and thank you personally for your assistance.

With kindest personal regards,

Sincerely,
Estes G. Kefauver

Malcolm Peattie, president of the Palo Alto-Stanford Kefauver Club, and no fool, wrote in all seriousness to the Daily that “the letter was indeed from Senator Kefauver. It was written in response to a campaign contribution from a Republican supporter who wishes to remain anonymous, and therefore used the first and most notable cover name that came to mind.”

Warren was a Big Man on Campus during the early 1950s. Gordon E. Harper, ’56, remembers taking a physics course in 1953 from Prof. Felix Bloch (1952 Nobel laureate). At quarter’s end, Harper noticed on a class computer printout that Warren G. Wonka had earned a very high grade in the course.

Harold G. Tennant, ’55, admits that he once ordered several theater tickets in Wonka’s name, and sent in a check. The humorless bank bounced it.

Warren has made more than one appearance in the Quad. In 1953, he is among the five seniors of the Magnolia Athletic Club (whatever that was) “who find
the atmosphere ideally suited for a variety of activities.”

Wonka, listed as “chief athlete,” is the man with a hat covering his face. Who infiltrated the Quad for a full-page spoof?

The following year, the 1954 Quad featured the Stanford Rugby Team, coached by Pete Kmetovic. Among the names listed under the team picture is you-know-who.

Wonka is listed in the 1954 Class Will: “To Warren G. Wonka, we leave an honorary life membership in the Alumni Association and an official record of all election results in which he has received votes.”

Warren made a place for himself in the President’s Office correspondence. President Wallace Sterling was rummaging through his files in 1957 and found a letter dated May 26, 1951, with a return address of 222 Divine, Hadocol, Mississippi. It said:

Dear Wally:

Just wanted to prove it could still be done. We were careful not to harm or disturb anything (better watch those diplomas). Enclosed find one used paintbrush. We missed you in church.

Reverently yours,
Warren G. Wonka

The paintbrush, according to the Stanford Daily, was no longer attached. The President’s Office files were otherwise undisturbed.

It is, perhaps, no surprise that he turns up in the 1959 Stanford Band handbook: “Warren G. Mac-Wonka: head Scotch bass section; holder of Shuchat Legion of Merit Award; professor of triangle, tissue paper and comb, kazoo, and sex.”

Warren got around.

In Greece, the Athens News carried a list of VIPs attending a 1954 royal party. The names included ambassadors and military brass and, of course, Mr. Warren G. Wonka.

In 1960, a post card arrived from Timbuktu reporting that the Stanford-on-Safari overseas program found Wonka, the Great White Father, “busily engaged in his spiritual and healing work among the population.”

The Daily even received a telegram from the Warren G. Wonka Benevolent and Protective Association at the Federal Penitentiary at Leavenworth, Kan., in which “your boy” said he enjoyed receiving his copies of the Daily. Are there shades of the Chappie’s “Old Boy” here?

Warren is a generous soul. When the Ford Foundation was raising money to establish Byrd Station in Antarctica, Mr. Wonka sent in $4. And in 1961, a letter postmarked “Byrd Station, Antarctica,” arrived with $5 toward Stanford’s $100 million PACE fundraising campaign.

His name has appeared in commencement programs, enrollment cards, and as a write-in for a Palo Alto City Council election. He was an Army private first-class in Germany, and once applied for student life insurance from the Continental National Group Life Insurance Co., but before the first $2.4 premium could be collected, he had disappeared.

One of his more notable claims to fame, however, is the Oct. 16, 1966, column of the late great Art Hoppe in the San Francisco Chronicle, entitled “Holy Pornography.”

Hoppe writes about the Christian Committee for a Clean Bible, headed by one Mr. Warren G. Wonka of Watsonville, Calif.

“Clearly the most dangerous book on the shelves today,” Hoppe quotes Wonka as writing, “is the Bible, which in nearly every version contains hundreds of filthy, immoral passages, obviously added by evil men plotting to subvert the true Christian faith.

“Our organization, the Christian Committee for a Clean Bible (CCCB), has recently completed work on a wholesome new edition of the Bible which is free of the objectionable words and corrupting ideas of the fake versions....

“Now, for the first time, the CLEAN proposition will enable us to remove all these filthy editions from...
As yet, the first known appearance at Stanford of Warren G. Wonka, a.k.a. Wanka, in the October 1948 Chaparral, overwhelming a coed at the annual freshman “Jolly-up” dance.

The MYSTERIOUS ARRIVAL OF WARREN WONKA: A Letter from the Editor

Okay. We give up.

Rumor has it that the very first reference to Warren G. Wonka was in a 1938 Chaparral, in the perhaps-not-unlikely guise of bra salesman. The search, however, has been fruitless.

In the autumn 1976 issue of the Stanford Historical Society Newsletter, then-editor Peter Allen reported that “the mythical campus figure who originated in the fertile brains of the 1938 editors of the Chaparral” had popped up again (this time in the Palo Alto phone book).

If Mr. Wonka is in the Chappie, it’s a very obscure reference indeed. Reading carefully through all 1938 issues of the Chaparral is an enlightening experience. However, we found not a single mention of Wonka from the editors, contributors, advertisers, the spoofed and the spoofers, or those “wits and good fellows elected to membership of the Hammer and Coffin Society.”

We have to admit that we were a little suspicious when we noticed that Winstead “Doodles” Weaver, ’37, notable campus cut-up and later comedian, was a guest contributor to one issue in 1938. But no, his contribution ragged on faculty expectations of undergraduate writing.

There are lingerie ads, to be sure, but no Wonka the bra salesman. There are masses of ads, in fact, for Roos Bros, City of Paris, and I Magnin; for the Mark Hopkins, Fairmont, and St. Francis hotels (or rather, their dance bands); for Sionaker’s Printing House and Liddicoats Bakery, L’Omelette and Peninsula Creamery; for Chesterfields, Old Golds, and Bond Street (“even the Gals approve this amazingly different pipe tobacco”). There are even impressive suggestions about where to take a date for good music and dancing in “Frisco,” along with the array of jokes and cartoons about Stanford’s “liquor situation,” sexual politics, and square faculty members.

But a careful search of columns like “Fables of the Farm,” “Whispers and Dispatches,” and
the bookstores so Christians everywhere can buy the Clean Bible. We are confident that good Christians will quickly see the difference and will never again be tempted to mix smut and religion.”

Interestingly, only two years later, Warren (along with sister Wendy) shows up in the Quad, again, among graduating seniors, but this time listing his hometown as Fagernis, Norway (and his major as Occult Studies.) Those in the know might compare his photo with that of political science student and Stanford Daily editor Kirk Hansen of Pasadena, while Wendy looks a lot like Bobbi Kraemer, also a political science major, from Washington, D.C. Were they willing co-conspirators?

Just in case you conclude that Warren leads a lonely life, take note. In 1960, cousin Willa was one of the lucky participants in Stanford’s early experiments with computer dating (see “Computers in Love,” p. 8). In 1966, sister Wendy was a popular write-in candidate for Homecoming Queen—causing such an uproar that the student body voted to do away with the contest altogether. Wendy then reappeared as a finalist in a national beauty contest (see story, p. 14), and her disqualification led to an irate letter to the editor from Mrs. Warren W. Wonka, her mother.

Warren still makes an appearance from time to time, but you have to be quick to catch him. (Notice who served as “advertising manager” of the Stanford Centennial Chronology issued by the News Service in 1985, and who subsequently helped out on the Historical Society’s Chronology of Stanford University in 2001.)

Gordon Harper, who was not connected to the Chappie, recently admitted to having a little fun with the Alumni Association. “About 10-15 years ago when the Alumni Association was switching from a printed to a computer database,” says Harper, “they mailed out a huge questionnaire. I hate questionnaires.

“One question they asked was: ‘Are there any other names you were known as on campus?’ I wrote in Warren G. Wonka. I thought they’d know it was a joke and eliminate it, but they didn’t.”

A check with the Alumni Association shows that, sure enough, there is Warren G. Wonka—but the computer knows all, and points immediately back to Gordon E. Harper.

And back in 1976, if you had phoned Mr. Wonka in Palo Alto, you would have reached Dave Lewis, Theta Xi house manager, and clarinetist in the Incomparable Leland Stanford Junior University Marching Band. The fact that many Stanford Band members lived in Theta Xi is a coincidence, of course.

Harry Press ’39, is former editor of the Stanford Observer, former managing director of the Knight Journalism Fellowship Program, and former co-editor of Sandstone & Tile.

SOURCES

Stanford Observer, December 1966 and May 1967
San Francisco Chronicle, 16 October 1966 (Sunday Punch)

eird things often take place on dull, rainy Saturdays on the Stanford campus—events that can have a national impact.

Robin Wiseman and her roommate, Penny Schuemaker, were bored to death on a Saturday just like that in 1967. Then, in the mail, came a spark of life.

“Penny’s mother, an active member of the WCTU1 in Chicago, was convinced California was the first step on the road to perdition,” said Wiseman. On that dreary January day, a letter from Penny’s mother urged her to apply for a national college queen contest sponsored by the Best Foods Corporation. An application form was enclosed.

So the two juniors, who lived in Stillman House, couldn’t resist. They filled out the application, making the entrant a “squeaky clean and adorable person” who was also active in many sports—a race car driver to boot.

Since “we would have been mortified to use our names,” the roommates sought the help of Wendy Wonka, younger sister of Warren G. Wonka.

To the best of their memories, Penny wrote the required essay, including the fact that Wendy had a 4.0 grade point average. It was Robin’s photo that accompanied the application. “We knew someone on the Daily willing to take a picture,” Wiseman said.

They mailed in the application and photo. In mid-April, the phone rang—a call for Wendy Wonka.

“I answered, and it was a man from Best Foods,” said Wiseman. “He excitedly told me I was one of four California semi-finalists for their national college queen contest. Students statewide could vote, he said, and there would be a full-page ballot in every college newspaper.

“The Stanford Daily, having taken my picture for the contest, thought it would be great if I won, and printed several thousand extra copies, thereby pretty much making sure that no one in California would get more votes.” The paper endorsed Wonka’s candidacy, stating, “The national college queen contest gives every student the opportunity to cast a vote for the true trend of college life.

“Too often American society looks at the university as a breeding place of bearded and sandaled trou-
blemakers,” the Daily editorialized. “Yet here is an opportunity to show that Stanford is not merely a place where the vice president is rioted against. A vote for Miss Wonka is a vote for our true concerns.”

Miss Wonka, ever alert to the great words of Stanford’s recently completed PACE fundraising campaign slogans, told the Daily that being a contestant was “like being on the edge of greatness.”

The dream of a national crown ended a few days later, however. Officials at Best Foods apparently were suspicious because Wendy received so many votes. They phoned Stanford’s Dean of Students, Joel P. Smith, to ask about her status on campus. Smith told Best Foods that it was university policy not to provide information about students without their permission. He then reported that he had “tried very conscientiously to contact Miss Wonka to obtain her permission, but was unable to reach her.”

Best Foods disqualified her, even though university spokesmen pointed out that the Wonka family reputation was beyond repute, “truly global in scope.” Hadn’t brother Warren’s activities taken him from Oregon to the Deep South, from Watsonville to Antarctica and Timbuktu?

Even Mrs. Warren W. Wonka of Watsonville was upset at the disqualification—her daughter’s second—writing a stinging letter to the editor of the Stanford Daily.

The previous fall, the Cardinal Board, a student group charged with “arousing campus spirit,” had set up a homecoming queen contest. Controversy arose when students alleged that a large protest vote for Miss Wendy Wonka had been ignored when the board named Miss Annabelle Marie Evans the winner. (There are reasons to believe,” wrote the Daily, “that Wendy received perhaps even more votes than the winner.”) In a subsequent ASSU referendum, the Stanford student body put an end to homecoming queen contests.

Miss Wonka has been little seen since her brush with greatness.

Penny Schumaker Bale went on for a graduate degree in architecture from U.C. Berkeley after earning her Stanford degree in history in 1968. After practicing for many years, she retired to raise her children and today has an antiques business.

After graduating in 1968 in political science, Robin Wiseman Kennedy earned a master’s degree from Berkeley and then a Stanford law degree in 1978. She practiced in Los Angeles and at Stanford, and now is a partner at Miller Starr & Regalia in Menlo Park. She is married to Stanford President Emeritus Donald Kennedy.

None of their children is named Wendy or Warren.

—Harry Press

1 The Women’s Christian Temperance Union, organized 1874, is best known for its ax-wielding forays on alcohol-dispensing establishments.

MISS WENDY GERALDINE WONKA
STANFORD UNIVERSITY
Stanford, California • Hometown: Woodland Hills, California

Junior. Majoring in: History-Political Science
Also studying: English, Psychology, Architecture, Communist Studies
Age: 20 Height: 5’ 6½” Sandy blonde hair, green eyes

Wendy has achieved scholastic recognition by being named to the Dean’s List and to the Cap and Gown Society. She has been a member of Cardinal’s Board, the coordinating committee for all campus activities. She was also on the Dean’s Advisory Committee on Undergraduate Education. Wendy has been Assistant Editor of “Stanford Daily” and Poetry Editor of “The Sequoia,” the campus literary magazine. She has been a House President and Social Chairman, and Treasurer of campus U.C.C.M. In sports, Wendy plays on an intramural basketball team. She also enjoys swimming, skiing and golf. A sports car enthusiast, she attends exhibitions and rallies. Her volunteer activities include work at the Peninsula Child Care Center for Autistic Children, and in precincts at election time. She seeks a career in City Planning, then marriage.

The April 1967 Stanford Daily’s thumbnail sketch of the near-perfect and very versatile Miss Wonka, who had apparently moved to Southern California from the Wonka hometown of Watsonville.
How a Nazi General Changed Stanford Football
(and Revolutionized the American Game)

by JOHN CARL WARNECKE

Yes, football fans, it’s really true—a German field general inspired coach Clark Shaughnessy to exploit the revolutionary T-formation that led Stanford to an undefeated 1940 season and a Rose Bowl victory on January 1, 1941. But first, let one of Stanford’s team members tell you what it was like to play on that famous “Wow Boys” team.

In 1940, Clark Shaughnessy became Stanford’s football coach, replacing Coach Claude (Tiny) Thornhill. Shaughnessy came to Stanford after a dismal season at the University of Chicago, where his team had lost to Michigan, 85-0, to Ohio State, 61-0, and even to Harvard, 61-0. The season had been so disastrous that Chicago dropped the game of football forever.

At Stanford, Shaughnessy inherited another woeful team, the first in university history to lose all its conference games. Stanford’s sole victory in 1939 was over Dartmouth, 14-3—and only after we had been berated unmercifully at half-time by coaches as the worst team ever to wear the Stanford Red.

I was a 215-pound left tackle at a time when everyone played both ways—on offense and defense. My teammates and I greeted Shaughnessy’s arrival with skepticism at spring practice in 1940. Although our 1939 team had a terrible record (1-8), we rationalized that we had been defeated each time by only a few points or a touchdown or two, while Chicago had been repeatedly drubbed.

I thought, “Here comes the undertaker. Shaughnessy killed off football at Chicago and now he’s been hired to kill the game at Stanford. Who in the world hired him, and why? What were they thinking?”

Shaughnessy lost no time in introducing a totally new offensive system he had devised. It was based on the T-formation, an ingenious attack using speed and deception. He told us—to our amazement—that if we executed his system well we would start winning and would even go on to the Rose Bowl.

We thought he was crazy. Doesn’t he know who he’s talking to? How could a new system change us that much? But our new coach seemed sincere and completely dedicated, and what he said was quite interesting—but way beyond our belief.

Shaughnessy was right. Stanford went undefeated that year, culminating its season with a 21-13 victory over mighty Nebraska in the Rose Bowl on Jan. 1, 1941. Our team became known as the “Wow Boys” for its miraculous reversal of fortunes. Shaughnessy’s system went on to become the basis of all modern football. We were present when a revolution took place in American sports.

Years later, Shaughnessy told a reporter that he had found the traditional single wing offense to be slow, ponderous, mindless, and usually ineffectual. A single
wing play began when the center snapped the ball to a running back standing six yards to the rear. The runner then had to advance the ball six yards simply to get it back to where it started. In the meantime, the defense could rush to the area of attack.

What I remember most about the new formation is the way Shaughnessy placed the quarterback directly behind the center, only a yard behind the line of scrimmage. The quarterback’s hands were held in that now-familiar position below the center’s rump—a sight that seemed quite strange to us at the time. The change saved yardage and valuable seconds. The center could look straight ahead, free to quickly block or move down field.

Then the magic began. Shaughnessy introduced the man-in-motion and spread ends. He would send a back running toward the sideline, causing the defense to spread out to cover him. The quarterback could change the play to a quick opener if he spotted a hole, pass to the man in motion if he were free, run himself, or pass the ball down field. The strategy changed football into a fast, deceptive, powerful game.

As a lineman, I was told to forget nearly everything I knew about blocking. Instead of driving with power, I learned to brush-block. The ball would be handed off to one of the backs, who already was running at the targeted hole without interference. If a defensive lineman was ahead of me or slightly to my left, I’d let him brush by, keeping my body between him and the hole to the right. Then I would throw my weight at his side and legs. If done quickly, this brought the lineman down instantly.

Despite diligent teaching, this new strategy confused us. At practice Shaughnessy seemed supernatural, demanding the impossible. His scheme seemed beyond comprehension. We had no idea if it would work, or even what the moves would look like in an actual game. But we were desperate, listening with a mixture of amazement but mostly disbelief.

Shaughnessy was fortunate to have outstanding players with whom to work, despite our record the previous year. He later said that when he saw the talent...
that spring he knew he made the right choice in coming
to Stanford. Six of the starting players in 1940—
Frankie Albert, Norm Standlee, Hugh Gallarneau, Vic
Lindskog, Chuck Taylor, and Bruno Banducci—were
later named either All-American or All-Pro. At the end
of our season, a San Francisco writer said the starting
backfield of Albert, Standlee, Gallarneau, and Pete
Kmetovic was as good as Notre Dame’s famous Four
Horsemen.

Kmetovic was a sparkling, tricky runner. Standlee
was the epitome of speed and power. Gallarneau was
big and strong and an excellent pass-catcher.

Albert was the first great T-formation quarter-
back. Because of his training in the single wing, he was
capable of many roles and certainly is one of the all-
time great players at that position. He could run, pass,
punt, and kick conversions. He also was an outstanding
tackler. Many great quarterbacks have come since then,
but they can only pass and, if necessary, run. Albert
could do everything.

We became true believers during our first game of
the season. We played the University of San Francisco in
Kezar Stadium in Golden Gate Park’s Panhandle and
were listed as 4 to 1 underdogs. We had handsome new
uniforms that Shaughnessy had designed to build our
confidence, but we got off to an uncertain start. We
were penalized four or five times for being offside. All I
could remember was getting my second wind and con-
centrating on my blocking assignments. We finally be-
gan to make a few good gains. In the next huddle Al-
bert, who could see what the new system was doing,
sparked us with what turned out to be words of magic.
“Jesus Christ,” he said, “this stuff really works!”

On the next play we exploded for a big gain and
we were off on our first touchdown drive. The scoring
play was over my tackle and I remember how well this
new brush block worked. After my block, I turned and
watched Kmetovic dash untouched across the goal line.
Hardly anyone realized that he had the ball or what had
happened. The fans could not believe what they were
seeing.

Our next game—against Santa Clara—was the
one we came closest to losing that season. We led,
7-6, late in the fourth quarter when Santa Clara marched to
our 15-yard line. On third down, with a yard to go, I
knew the next play was coming straight at me. I re-
member saying to myself: “Here they come. What can
I possibly do?”

I was nervous and uncertain. I turned to look over
my shoulder and there was Norm Standlee, the largest
player on our team at 225 pounds. He was bent over
slightly, his hands on his knees—chewing a long piece
of straw! Just to look at him gave me all the confidence
I needed. I went back to the basics as their play started
and gave it all I had. I drove across the line to disrupt
the interference. Norm was right behind me, stopping
Santa Clara cold. They failed again on the next play and the game was ours.

By now the press was buzzing, reporting the football miracle that was taking place. Words such as “Cinderella,” “magic,” “genius,” and “miracle” began appearing in headlines and stories as the Wow Boys continued their stunning upsets. Experienced writers knew that the unbeaten Broncos from Santa Clara had owned a 10-game winning streak. Ahead lay the mighty Trojans from USC who had not lost a game in 18 starts, the powerful Huskies from Washington, and the nation’s top-ranked Nebraska Cornhuskers. They were all well-coached, powerful teams.

Shaughnessy had told us that our opponents would come up with new defenses to stop us as the season went on, but he had plays that would look exactly like our earlier ones, yet would work in the opposite direction. He called them counter plays—another staple of modern football.

He showed us what he meant in the Oregon State game. At halftime the teams were tied, 7-7, but our offense had been stopped. OSU had come up with a four-man line, three linebackers, three deeper backs, and a safety to guard against the long pass. Working with Albert and the other coaches, with only three minutes left in halftime, Shaughnessy diagrammed four new plays. To our utter amazement, he laid out the assignments of all 22 positions on both offense and defense. He told us we had time only to memorize our own assignments and that we were not to try to figure out what the others were doing.

The first time we got the ball in the second half, we ran the new plays in sequence. Kmetovic sprinted 38 yards for the first touchdown; 90 seconds later Gallarneau caught a 40-yard pass on the goal line and scored—Albert’s only pass completion in the game. Rod Parker then roared through the heart of the Oregon State line for another touchdown. We had scored three touchdowns in 10 minutes and were leading, 28-7. To me, that game was the most dramatic example of Shaughnessy’s improvisational genius.

The USC Trojans were favored to win the Pacific Coast Conference. Their players averaged 20 pounds heavier than ours. Shaughnessy said, “But you did not go to USC. You enrolled at Stanford. You’re smarter than they are.” Before 70,000 fans in the Stanford Stadium, with the score tied 7-7 in the fourth quarter, we stopped USC and took over on our own 20-yard line. Albert moved the team to the USC 30. After a pass to the five, Standlee bulled over for a score. Thirty seconds later, Albert intercepted a Trojan pass and ran for a touchdown—two touchdowns in half a minute. We won, 21-7.

We went on to defeat six other teams that season, culminating in the 21-13 defeat of Nebraska in the Rose Bowl on Jan. 1, 1941. We walked off the field to a standing ovation from 90,000 fans, with an undefeated, untied record. Sports writers ranked Stanford
second behind Minnesota.

Thirty-six years later, sports writer Ron Fimrite revisited that historic season in a September 5, 1977, *Sports Illustrated* story. He wrote:

“Clark Shaughnessy was a dour theoretician, Frankie Albert an unrestrained quarterback and Stanford a team of losers, but combined they forever changed the game of football.

“Now there is scarcely a team at any level of play that does not use the T in one form or the other. Be it pro set, power I, wishbone, or veer, it is essentially the same formation Shaughnessy introduced 37 years ago to an extraordinary group of young men who would become known as the Stanford Wow Boys.

“Shaughnessy’s meeting with these players stands as one of those rare instances in life when time, place, and personalities join in perfect union, when disparate and formerly malfunctioning parts mesh into a precision instrument. American football has never had another moment quite like it.”

Fimrite did not say where Shaughnessy had gained the inspiration for his T-formation, however. Perhaps the idea that the old single wing was stodgy and ineffectual was enough.

Then, in 1986—45 years after our season—*Smithsonian* magazine published an amazing story by William Barry Furlong, a *Chicago Daily News* sports writer. It was entitled “How the War in France Changed Football Forever.” The subtitle read: “In 1940 the theories of a German field general and a cagey coach helped create the devastating modern T-formation.”

Furlong had interviewed the aging, white-haired Shaughnessy and asked him who had the greatest impact on his field in his lifetime. He expected the coach to name Notre Dame’s Knute Rockne or George Halas, his boss in the Chicago Bears organization. But Shaughnessy replied, “General Heinz Guderian.”

Guderian had written a book on tank warfare, *Achtung! Panzer!* in 1937 and a seminal article on the T-formation Quarterback, Frankie Albert, Dies at 82

Frankie Albert, the quarterback who led the Stanford Wow Boys to their undefeated 1940 season, died Sept. 4 in Palo Alto from complications of Alzheimer’s disease. He was 82.

He had languished as a sophomore tailback on the disastrous 1939 team, which lost every league game (but pulled out one victory in non-league play). When coach Clark Shaughnessy came to Stanford in 1940, he made Albert the first T-formation quarterback in modern football.

In his 1943 book *Football in War and Peace*, Shaughnessy said: “To make it work, Albert was my key.... Long before I went to Stanford I had heard of him. I knew he fitted exactly the requirements of the T-formation. His talents were primarily those of a faker; he could fool people, and by temperament he ate up that sort of assignment. His talents were more intellectual and psychological than physical. He was a poker player if there ever was one.”

Gary Cavalli wrote in his 1982 book *Stanford Sports* that Shaughnessy once described Albert as “a superb ball handler, a magician with the ball, and a gifted field general” (emphasis added). He was wonderfully observing, a great left-handed passer, and a great kicker.”

Albert won All-America honors in 1940 and 1941 and finished third in balloting for the Heisman Trophy in his senior year. He later starred in a movie about his college career, “The Spirit of Stanford.”

After serving in the Navy during World War II, he joined the San Francisco 49ers. In seven seasons of pro ball, he threw for 10,795 yards and 115 touchdowns. He later served as a broadcaster and was head coach of the 49ers from 1956 to 1958.

“Frankie Albert, the first of the modern T-formation quarterbacks.”
war of movement led by tanks alone.

“What we want to do,” Guderian wrote, “is, for a short period of time, dominate the enemy’s defenses in all of its depth....” He deplored trench warfare and eliminated the infantry because it slowed the explosive attack of his tanks.

The genius of Shaughnessy was that he had been reading the writings of military strategists between World Wars I and II, looking for new ideas. He came upon Guderian’s book and had it translated into English. He set about relating the general’s battlefield tactics to those of the football field.

The similarities were obvious to him. Immobile trench warfare was the equivalent of single wing line play; in both cases the enemy had time to mass men to prevent breakthroughs. Guderian eliminated the infantry; Shaughnessy dropped most backfield blocking because it slowed the quick bursts of his ball carriers. Feints and movement could spread out, confuse, and immobilize defenses on the battlefield; they could do the same along a line of scrimmage.

So it was that Shaughnessy adapted Guderian’s ideas to American football, combining speed, deception, and offensive options—just as Germany did in sweeping across Europe and into France in World War II.

The German Blitzkrieg was under way as we learned the T in the spring of 1940. But we never connected Hitler’s feint toward Netherlands and Belgium with our man-in-motion, nor his tank breakthrough at Sedan with a Norm Standlee burst through a hole in a spread-out line. Shaughnessy quietly was teaching us the basic principles of Achtung! Panzer!

Years later, I reported the Guderian connection to Fimrite, who said he had never heard of it, despite his years of research on the 1940 Stanford team. But Fimrite quickly understood why Shaughnessy had told us nothing. “How could he possibly say at that time that he had taken this concept from one of Hitler’s top generals?” Fimrite said. “He couldn’t have told you—he would have been labeled a traitor.”

Now the secret is known, and we can understand why it took so long for it to be revealed. And those of us who participated in Shaughnessy’s revolutionary experiment remain thankful that we were present at the genesis, when American football was transformed.

John Carl Warnecke graduated cum laude from Stanford in 1941, then earned a master’s degree in architecture from Harvard. He is an award-winning architect with a life-long interest in contextual design. His work spans an array of buildings and environments from skyscrapers and government buildings to universities and schools, airports, and hospitals. He designed numerous Stanford campus buildings, including Meyer Library, Maples Basketball Pavilion, Cummings Art Building, the post office, bookstore, and two housing clusters.
We are grateful to John McClelland Jr., class of 1937, for sending the following reminiscence of journalism Professor Chilton “Chick” Bush (1896-1972). We encourage readers to contribute their memories of other Stanford faculty and staff.

In 1933, one of Stanford’s smallest and possibly weakest departments was Journalism.

To upgrade it, even as the Depression was deepening, Stanford lured a young journalism professor from the University of Wisconsin to become its Journalism director. His name was Chilton Rowlette Bush. With both a doctorate and two texts to his credit—Editorial Writing and Newspaper Reporting of Public Affairs—he was well qualified for the job.

Dr. Bush settled into a small corner office on the second floor of the University Press building, near the southwest corner of the Quad, where Journalism shared cramped quarters with Chaparral and The Quad. The Stanford Daily shack—and it was a shack—was next door.

That first name—“Chilton”—was abbreviated to “Chick,” and became the name everyone knew him by. He was supposed to supervise the Daily but knew better than to try to influence what went into it. One time when the administration was more upset than usual with something in the Daily, he recommended that the university start publishing a newspaper of its own. Eventually this was done.

Chick Bush was a force in my life from the time he let me, a freshman, enroll in one of his senior classes.

One of his greatest attributes was the interest he took in helping his students and his graduates. He helped graduates by becoming widely acquainted with newspaper publishers and press association men (radio didn’t have news staffs then and there was no TV). When someone had an opening he could call Chick for a recommendation, knowing it would be one of Chick’s graduates who had been well trained.

In spring of my junior year, the National Park office in San Francisco asked if he had someone who could take a summer job writing publicity. He had—me. His recommendations later put me in three California newspaper jobs. He was just as interested in and helpful to others who had left Stanford with his name on their diplomas.

It was not unusual for a graduate to make an unexpected call on Chick and his wife Myrtle at their comfortable back-campus home and find another ex-student there also. He made all feel welcome.

Chick Bush distinguished himself by pioneering an innovative device—the sampling of readership with polls. He helped newspapers measure readership of various parts of their contents by applying the same formula to selected numbers of readers. He became a partner in an enterprise that conducted the Portland Oregonian’s innovative “Front Door Ballot Box.”

Chick was the advisor to the Stanford chapter of Sigma Delta Chi, professional journalism fraternity, and he convinced me, when I was president of the chapter, that the Greek letters should be dropped. Too many considered it an honorary or a social fraternity. We put on a campaign for “Institute of American Journalists,” but didn’t make it. After the war, there was a vacancy on the national board of Sigma Delta Chi, and Palmer Hoyt of the Oregonian asked Chick to suggest someone for the appointment. He recommended me (this was 10 years after graduation) and I would go on to become president of the national society and sow the seeds of a name change. The name was changed later from SDX to SPJ—Society of Professional Journalists—now the largest journalistic organization in the world. No one mistook it for an “honorary.”

Among those who studied journalism at Stanford in the ’30s, ’40s, and ’50s, Chick Bush is a man remembered with affection—much admired and appreciated.

—John McClelland Jr.

Editor’s note:

During his 27 years at Stanford, Bush transformed a loose undergraduate program into a department, introduced an interdisciplinary doctoral program, and signed the diplomas of hundreds of students who went on to work for leading newspapers. He also was at the heart of what little news and information was published on campus. Bush was instrumental in persuading the administration to hire Fred Glover in 1946 as Stanford’s first, full-time director of information—the birth of Stanford’s News Service. He had already brought back to campus former student Pete Allen as editor of the Stanford Alumni Review. Bush retired in 1961.
After nearly three years, workmen finished carving a 12-foot-high frieze around the top of the 100-foot-high sandstone Memorial Arch, built in 1899 over the Outer Quad’s main entry. Based on an outline of “The Progress of Civilization in America” by renowned sculptor Augustus Saint-Gaudens, the carving was executed by San Francisco sculptor Rupert Schmid. Taking a liberal dose of poetic license, one panel depicted Leland and Jane Stanford, on horseback, charting a course for the Central Pacific Railroad over the Sierra. When done, Schmid, who had bid $15,000 for the job, sought an additional $19,325 for extra required work, including deeper carving than originally specified. University officials refused to pay and Schmid lost a lawsuit against the university. He may have felt some pleasure when the arch was damaged beyond repair in the 1906 earthquake. It was not rebuilt.

Officials demolished the old ramshackle construction barracks known as the The Camp. Located on the site of today’s Old Union, the Camp provided a low-cost housing alternative for male students, quickly developing an aura of poverty but also a reputation for residents’ scholarly and literary achievements. Jane Stanford had turned down earlier efforts to close the unsightly buildings, but finally gave in to Business Office pressure.

In an October address to the Board of Trustees, Jane Stanford confirmed the board’s authority to charge tuition and authorized trustees to sell all Stanford-owned property except the Palo Alto Farm and her San Francisco Nob Hill residence. She also called for development of regulations governing the appointment and removal of faculty members, and said that the institution and its faculty should refrain from partisan political activities.

Low-cost housing known as The Camp was demolished in 1902. Once the barracks for workmen who constructed the university, it later served as cheap housing for campus journalists and literary figures.
75 YEARS AGO
(1927)

A cartoon “How to Get to the Quad Alive” in the Stanford Illustrated Review featured students dodging speeding automobiles as they tried to get to class. In the days before cars were banned from roads around the Quad, students also were depicted pole vaulting into the Quad, traversing a highwire, and climbing a bridge over the ubiquitous cars.

An arcade-style superstructure of bleachers was built around the rim of the stadium, providing 16,500 new seats for a total capacity of approximately 87,000. To assure stability, the structure’s pilings were sunk into the ground underneath the dirt embankment that formed the 1921 stadium. Architect John K. Branner, son of Stanford’s second president, designed the bleachers to complement the Quad arcades.

50 YEARS AGO
(1952)

Fullback Bob Mathias became the first man to compete in both the Rose Bowl and the Olympic Games in the same year. At the Helsinki Olympics, he repeated his 1948 gold-medal victory in the decathlon, the first to win that competition twice.

Stanford’s mythical Warren G. Wonka gained national attention when Estes Kefauver, seeking the Democratic nomination for president, wrote to thank him for his campaign assistance and express hope of meeting him personally.

C. Easton Rothwell, Ph.D. ’38, was named director of the Hoover Institute and Library on War, Revolution, and Peace. Before joining the institute in 1947, he held a variety of positions with the United Nations. His predecessor, Harold H. Fisher, continued as chairman of both the institute and library.

Guthrie House and Phi Sig fraternity together won the Junior Water Carnival sweepstakes trophy for their replica of a Mississippi River showboat. More than 1,000 spectators lined the shores of Lagunita to view “The History of Water Transportation.”

Professor Felix Bloch became Stanford’s first Nobel laureate when he was named co-winner of the physics prize for his work on nuclear magnetic resonance. He discovered that when atoms are exposed to a strong magnetic field, the atoms absorb certain radiofrequency and their cores “resonate” or vibrate. The discovery led to magnetic resonance imaging, a widely used diagnostic tool in medicine.

Jessie Knight Jordan, the widow of the university’s first president, David Starr Jordan, died at 86 on Nov. 5. A campus resident for 61 years, she had been her husband’s chief literary critic and editor. “Miss Jessie” set the pattern of informality between early faculty and students with her Thursday evening “at-homes.”

25 YEARS AGO
(1977)

In May, a nonviolent anti-apartheid sit-in resulted in the largest-ever number of arrests on campus – 294 persons, of whom 270 were students – after 16 hours at the Old Union. Protesters condemned U.S. corporate investments in South Africa and the Board of Trustees’ refusal to urge Ford Motor Co. to close its South Africa operations. Most of the students were charged with misdemeanors and some also with resisting arrest. No campus judicial charges were filed.
The five-year drive to raise $300 million in the Campaign for Stanford ended in May, surpassing its goal by $4.2 million.

The Faculty Senate endorsed the principle of universal course evaluation by students and urged its prompt implementation.

Former Swedish Prime Minister Olof Palme, the first recipient of the Law School’s Jackson H. Ralston Prize in International Law, delivered campus lectures in conjunction with the $15,000 prize. Established by Opal Ralston in memory of her husband, a prominent Washington, D.C., attorney, the award honors contributions to the development of the role of law in international relations.

Frederick Emmons Terman, ’20, engr. ’22, retired vice president and provost and former dean of engineering, attended the October dedication of the $9.2 million engineering center named in his honor. It was made possible by gifts from two of Terman’s former students and their wives, William and Flora Hewlett, and David and Lucile Packard. Nearly 40 years earlier, Terman had encouraged the two recent graduates to start their electronics collaboration. Terman is credited with establishing “Silicon Valley” as one of the world’s leading electronics centers.

Reversing its 1944 ban on sororities, the Board of Trustees in December approved the concept of “subjectively selected” women’s organizations, on the condition that groups maintain local control over membership and meet university policies against discrimination. After fulfilling these requirements in 1981, Delta Gamma became the first officially recognized sorority at Stanford in 37 years.

—Compiled by Karen Bartholomew

Correction

The photograph on page 32 of the previous issue (Vol. 26, No. 1) is not Dink Templeton, as we thought, but his brother Ruric “Rick” Templeton, who also coached track at Stanford.
Currently on exhibit at the Cantor Center for Visual Arts (Stanford Museum) are selections from the extensive collection of 19th-century glassware given to the museum in 1903 by the celebrated Venetian firm of Salviati & Co. The selection includes 120 vessels in all the techniques, styles, and colors that have made the Venetian island of Murano famous since the Renaissance. Salviati at Stanford: Venetian Glass of the 1890s, is open, free to the public, through December 29.

A fully illustrated color catalogue is available at the museum bookshop. It covers the entire collection of 245 objects, including an informative essay on the history of the Salviati firm and the patronage of Jane Lathrop Stanford by guest curator Carol Osborne, former associate director and chief curator of the Stanford University Museum. Osborne’s catalogue, a benchmark for glass of the period, was recently added to Christie’s list of 100 “must-have” books for collectors.

Osborne told Sandstone & Tile that Stanford’s collection of late 19th-century Venetian glass is the “finest and most complete in the world, probably because it was kept packed away for a hundred years out of modernist disregard for Victorian taste and yet not sold off out of respect for the founders.”

In 1883, Leland and Jane Stanford, accompanied by Leland Jr., visited the Salviati shop in Venice, where they met the young assistant Maruzio Camerino. The Stanfords’ relationship with Camerino deepened when he rushed to Florence after Leland Jr.’s death there in 1884 to assist the grieving couple. During 1899–1900, Mrs. Stanford commissioned mosaic decoration of the church and the museum’s exterior from Salviati & Co.

The collection given to the museum included jugs, jars, bottles, bowls, vases, and goblets. Although many items were badly damaged in the 1906 earthquake, the firm made later additions.

The technique for blowing glass was discovered in the 1st century B.C. From the late 15th century, Murano was the center of the Venetian glass industry, which especially flourished during the 16th and 17th centuries. The industry and the artistry of blown glass was revived in the 19th century by Antonio Salviati, whose artists often modeled their designs on historic pieces in Murano’s glass museum. The Salviati masters of glassblowing made objects in chalcedony, filigree, and mosaic glass, as well as decorative vessels in a complexity of real and mythical animal forms, including sea-horses, dolphins, hippocribs, and dragons.

Rehabilitation of Stanfords’ Sacramento House is Launched

Renovation of Leland and Jane Stanford’s Sacramento mansion was officially launched June 26, 2002.

Representatives of the Leland Stanford Mansion Foundation and the California Department of Parks and Recreation gathered at the site near the capitol building to celebrate the beginning of work by craftspeople, artisans, and technicians to rehabilitate the first three floors, add a new elevator at the rear of the building, and install other amenities.

Attending on behalf of the university were Ambassador L.W. “Bill” Lane Jr. and University Archivist Maggie Kimball.

In remarks at the event, First Lady of California Sharon Davis acknowledged the attention of current and former Stanford University presidents to the project. Former California First Lady Gayle Wilson, a Stanford alumna and honorary co-chair of the Leland Stanford Mansion Foundation, also spoke.

Sharon Davis described Ambassador Lane as “one of the most tenacious, effective, and valued champions of the Leland Stanford Mansion restoration project.” He is perhaps best known to Historical Society members for his work to restore the Red Barn on campus in the early 1980s, but his tireless efforts extend to many other Stanford facilities and programs. He has been involved with the Stanford mansion project for more than three decades and until recently served on the board of the Mansion Foundation.

Governor Leland Stanford purchased the house in Sacramento in 1861 for $8,000. Built just four years earlier by architect Seth Babson, it was enlarged by the Stanfords in 1871 to 19,000 square feet, more than tripling its size. Leland Stanford Jr. was born in the house in 1884. In 1987, the Historical Society published Dorothy F. Regnery’s book, An American Treasure: The Stanford House in Sacramento, a detailed history of the house. That same year the house was designated a National Historic Landmark.

The restoration effort also includes an attempt to reacquire original Stanford family furnishings to place in the mansion. Once the building rehabilitation is completed, the house will return to public service. It will serve as a center for important events hosted by the governor and the leadership of the state legislature. It also will be open for public tours.

—Maggie Kimball
Members Visit Steinbeck Center

More than 50 Historical Society members and friends toured the John Steinbeck Center in Salinas on Sept. 7.

During the bus trip from campus, University Archivist Maggie Kimball provided a running commentary about Steinbeck at Stanford. The trip and a talk by Kimball to the society last February (published in the previous issue of *Sandstone & Tile*) were timed to celebrate the centenary of Steinbeck’s birth.

The Stanford group viewed displays about various Steinbeck books and his Pulitzer and Nobel prizes for literature. They also saw scenes projected on large screens from movie versions of his books and handwritten letters by Steinbeck that are exhibited at the recently opened 37,000-square-foot center in Salinas.

Before visiting the center, the group toured Steinbeck’s nearby boyhood home. A group of Steinbeck House volunteers served lunch.

Program committee chair Rosemary McAndrews paid tribute to Gene Kershner for organizing the field trip. “He is amazing,” she said. “He looks after every detail.”

A Note from the President

In my remarks at the society’s annual meeting last May, I said that “The society has begun a process of strategic planning to enable broadening its work.” I am delighted to tell you that the process is underway. For the first time in a number of years, your society has a full set of working committees: Finance (Kent Peterson, chair), Governance (Bob Augsburger), Historic Houses (Marian Leib Adams), Membership (John Bunnell), Oral Histories (Carolyn Lougee Chappell), Program (Rosemary McAndrews), Publications (Karen Bartholomew), and Strategy (Bob Hamrdla).

I have asked the chairs of each committee to direct their respective groups in setting an ambitious agenda for future work, one that takes proper cognizance of past accomplishments, yet looks beyond what may have been boundaries—indeed, one that enlivens the society’s goals: “to collect and preserve the history of the...university and to encourage knowledge and understanding of the history of the...university and the ideals of its founders.”

I have also set an ambitious goal for myself: to report to you at this year’s annual meeting (Tuesday, May 13, late afternoon—mark the date!) initial concrete results of this process. In the meantime, we welcome your comments, and we would certainly welcome your involvement; if any of you have interest in working with any of the groups named above, let us know. And we hope to see you at our programs.

Cordially,
Bob Hamrdla

News Director Beyers Dies

Historical Society board member Robert W. Beyers, former director of Stanford News Service, died Oct. 18 as *Sandstone & Tile* was going to press. An account of his contributions to Stanford will appear in a future issue.

From the Archives

Among numerous collections recently acquired by the University Archives are two sets of faculty papers:

The papers of Herant Katchadourian, professor of psychiatry and behavioral sciences, document his long tenure at Stanford and his roles as teacher, researcher, and administrator. Known by many Stanford undergraduates for his class “Human Sexuality,” Katchadourian was appointed the university’s first ombudsman in 1970, served as vice-provost and dean of undergraduate studies, was a university fellow, and taught in the Human Biology program from its inception. In an earlier accession, the Archives received the documentation and data from the Stanford Cohort Study, a research project conceived by Professor Katchadourian during his tenure as dean. The study of members of the Stanford class of 1981 resulted in the important book, *Cream of the Crop*, by Katchadourian and John Boli about the experience of Stanford graduates during their first decade after college.

An addition to the papers of Gabriel Almond, emeritus professor of political science, was received this fall. Professor Almond has continued to write actively since his retirement in 1976. The papers include correspondence as well as research notes and manuscripts. The papers of his late wife, Dorothea Almond, accompanied Professor Almond’s papers. Dorothea Almond, a longtime child and family advocate, served as director of the Bay Area Peninsula Children’s Center after the family moved to Palo Alto in 1963. She was instrumental in establishing the university’s first childcare center in 1969 and, along with others, worked hard to provide affordable quality childcare on campus. The collection documents Almond’s work as childcare advocate at Stanford and her service as a community advocate for both young people and seniors.

—Maggie Kimball
University Archivist

Lydia Poon Wins Essay Contest

The winner of the 2002 Stanford Historical Society student essay contest was Lydia Poon, a senior in history, for her paper “The Failure of a Progressive Vision: War Service at Stanford University, 1916–1918.” Her paper will be published in a future issue of *Sandstone & Tile*.
Membership is open to all who are interested in Stanford history. Annual dues are:

- Students (currently registered), $10
- Full, $40
- Heritage, $100
- Distinguished heritage, $500
- Patron, $1,000
- Life, $5,000

Make checks payable to STANFORD HISTORICAL SOCIETY and mail to:

P.O. Box 20028,
Stanford University
Stanford, CA 94309

To join or renew by credit card visit our website: www-sul.stanford.edu/depts/shs/
Scroll to “Membership” and click on the credit-card link to the Development Office website. For further information, contact the society office (see lower left on this page).

Upcoming Society Activities

Confirmation of date and notification of time and location will be sent to members shortly before each event.

January 15, 2003 Susan Christiansen on the historical context of the art and architecture of Memorial Church in conjunction with the centennial of the church’s 1903 dedication.

February 4 Jean Coblentz on the history of the Stanford Associates (changed from Jan. 21).

March 4 John Pearson on Stanford’s community of international students.

April 6 Community Day/Founders’ Day

May 13 Annual meeting Bob Augsburger on the people and issues involved in the evolution of Stanford’s endowment.